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NON-EQUILIBRIUM THERMODYNAMICS
WITH HIGHER ORDER FLUXES: BALANCE LAWS

AND EXPLOITATION OF THE ENTROPY INEQUALITY

VITO ANTONIO CIMMELLI, [a] WOLFGANG MUSCHIK, [b] AND VITA TRIANI [a]*

ABSTRACT. Weakly non-local extended thermodynamics of rigid heat conductors is pre-
sented. The two celebrated procedures by Coleman-Noll and Liu for the exploitation of
second law of thermodynamics are compared. It is proved that the two procedures are
equivalent, if in the Coleman-Noll procedure all relevant equations are taken into account
as constraints.

1. Introduction

The Navier-Stokes and Fourier theories of viscous, heat-conducting fluids provide par-
abolic equations and this predicts infinite pulse speeds. The attempts to find a remedy have
provided an additional systematic type of thermodynamics: the extended thermodynamics
[1, 2]. That theory leads to hyperbolic field equations, and thus it provides finite pulse
speeds. Extended thermodynamics is a hierarchy of theories with an increasing number of
fields. It is supposed that the system of governing equations is given by an arbitrary num-
ber of balance laws in which the flux at step n becomes the wanted field at step n+ 1. The
choice of the equations number depends to the accuracy of the approximation. In order to
obtain a closed system of differential equations, it is necessary to choose the constitutive
equations for all terms of production and for the last flux, since they cannot be obtained
by any equation of the next step. The constitutive quantities will depend on all the wanted
fields. This type of system stems from statistical mechanics [3]; in fact, a fundamental hy-
pothesis of extended thermodynamics is to make the results compatible with those of the
microscopic theories [1, 2]. The second law of thermodynamics restricts the constitutive
equations [4] giving a deeper insight into the mathematical structure of the theory. The
most celebrated techniques for the exploitation of the second law are that of Coleman-Noll
[5, 6] and Liu [7, 8]. The aim of this paper is to compare the two techniques by consid-
ering the example of weakly non-local extended thermodynamics of rigid heat conductors
and to prove that both the procedures are equivalent, if all relevant balances are taken into
account as constraints in the Coleman-Noll technique. In Section 2 we give some more de-
tails about the 4-field theory of extended thermodynamics [2], and in Section 3 we present
in a rather general form the Coleman-Noll and the Liu procedures for the exploitation of
the second law. In Section 4 we investigate the conditions for which the two procedures
are equivalent for weakly non-local extended thermodynamics of rigid heat conductors.
Finally, the discussion of the obtained results will close the paper.
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2. The 4-field theory of extended thermodynamics

In the framework of extended thermodynamics one can find two different approaches
[9]: the extended irreversible thermodynamics proposed by Jou, Casas-Vázquez and Lebon
[1], and the rational extended thermodynamics as developed by Müller and Ruggeri [2].

The first one postulates a system of balance laws for the evolution of dissipative fluxes,
without any additional requirement. In particular the state space is larger than the set of the
wanted fields, and so it is also compatible with weakly non-local theories, that are those
including gradients of the wanted fields. In contrast, rational extended thermodynamics
assumes that the state space is rigorously local, that means, it does not include any deriva-
tives. Let us consider a three dimensional rigid heat conductor, and let us assume that
the time rates of the specific internal energy ε and of the heat flux density q satisfy the 4
following balance equations [2]

∂tε+ qi,i = r,(1)

∂tqi +Nij ,j = − 1
τR
qi.(2)

Because of the rigidity of the considered heat conductor the substantial time derivative
coincides with the ordinary partial time derivative, namely we have d

dt ≡ ∂t. The abbre-
viation f,k := ∂f

∂xk
, k = 1, 2, 3 , and Einstein’s convention of summation over repeated

indices are used. Here r is the density of heat supply, N is the flux of q, and τR is a relax-
ation time whose meaning will be specified below. The name 4-field theory stems from the
fact that in a 3D body first order fluxes have three components, so together with the scalar
balance quantity we have four wanted quantities. It is proved in [10] that the system above
can be derived in the framework of the classical non-equilibrium thermodynamics with
local state space. In a solid crystal at low temperature, heat transport is due to the motion
of the phonons [11]. These are quasi-particles obeying Bose-Einstein statistics. Phonons
may interact with each other and with the lattice imperfections through two different types
of processes:

• Normal(N)-processes, conserving the phonon momentum;
• Resistive(R)-processes in which the phonon momentum is not conserved.

The frequencies νN and νR belonging to the normal and resistive processes determine

characteristic relaxation times τN =
1
νN

and τR =
1
νR

[12]. By choosing a suitable con-

stitutive equation for N, it is possible to recover the linearized Maxwell-Cattaneo equation
from the balance of the heat flux q [13]. Additionally, if we suppose that the relaxation
time τR and the heat conductivity k are constant, then the following constitutive equation

(3) Nij =
k

τR
ϑδij ,

with ϑ as absolute temperature, results in the linearized Maxwell-Cattaneo equation

(4) ∂tqi +
k

τR
ϑ,i = − 1

τR
qi,
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which describes thermal wave propagation at low temperature [14, 15]. If τR
.= 0, we

obtain the Fourier law of heat conduction

(5) qi = −kϑ,i.

Instead, non-Fourier diffusive regime is described by the Guyer-Krumhansl equation [16,
17, 18]

(6) τR∂tqi + qi = −kϑ,i + l1
2(qi,ll + 2ql,li).

Here l1 has the dimension of a length and depends on τN . Let us notice that (6) can be
obtained also in the framework of classical irreversible thermodynamics with first order
non-local state space [19]. In the linear case an admissible expression for Nij is [20]

(7) Nij =
k

τR
ϑδij − L1qi,j − L2qj ,i − L3qk,kδij .

Here L1, L2 and L3 are constants. The Guyer-Krumhansl equation is recovered by (2) and
(7) under the additional assumption

(8) L1 = L2 = L3 = − l1
2

τR
.

The considerations above suggest that the complete description of heat propagation, which
encompasses all the well known theories, requires a gradient generalization to the extended
thermodynamic approach. This fact motivates our investigation of Coleman-Noll and Liu
procedures in this case.

3. Coleman-Noll and Liu procedures

The aforementioned constitutive equations of heat conduction are restricted by the sec-
ond law of thermodynamics, and so it seems to be important to analyze and compare the
different techniques of its exploitation.
General formulation:
Let us indicate by un(t, xν), n = 1...N, ν = 1, 2, 3 the wanted thermodynamical fields,
[21, 22, 23]. The change in time of these basic fields is governed by the following first
order hierarchical system of balance laws

(9) ∂tun + Fnµ,µ = σn,

where Fn and σn are the flux and the production of the field un, respectively. To close the
system (9), one needs constitutive equations for the N-th flux FN and for the N produc-
tions σn, n = 1, 2...N . First order weakly non-local thermodynamics [1] postulates these
equations in the form

(10) FN = FN (un, un,ν), σn = σn(un, un,ν).

Here FN and σn are suitable real functions which cannot be chosen arbitrarily, because
they have to satisfy the second law. Let us assume that these equations are independent, in
the sense that none of them can be obtained from the other ones by a linear combination.
Inserting the constitutive equations (10) into the balances (9) results in the the system of
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differential equations which has to be solved finally [21]. For exploiting the second law,
we need the local balance of entropy, which takes the form

(11) ∂tS + FSµ,µ − σS ≥ 0,

where S is the entropy density, FS is the entropy flux and σS the density of entropy supply.
In order to calculate the left hand side (11), namely the total rate of entropy production per
unit of volume, we have to consider the constitutive equations of the entropy density and
of the entropy flux, which are not included into the set (10). The principle of equipresence
imposes that S and FS depend on the same variables as the other constitutive functions do.
Then we assume

(12) S = S(un, un,ν), FS = FS(un, un,ν).

Because of (11) and (12), we get the dissipation inequality, which can be expressed in the
general form

(13) I(un, ∂tun, un,ν , ∂tun,ν , un,νµ) ≥ 0.

The entropy principle requires that any solution of the balance equations for given initial
conditions and inserted constitutive equations has to satisfy the dissipation inequality (13).
This principle is the formulation of the second law by Coleman-Mizel [24]. The entropy
principle can be exploited in by different procedures, according to the technique which is
used in order to take into account the balance laws. The exploitation procedure becomes
easier, if the system of field equations is linear in the highest derivatives of the wanted
fields in the state space. Since this is the usual context, it is possible to proceed with the
construction of a method to satisfy the dissipation inequality (13).

Coleman-Noll method:
Here, we consider that version of the Coleman-Noll technique in which the inequality
(13) is transformed by substituting all the balance laws into the local entropy inequality,
regarding them as constraints [5, 6]. If not all balances were introduced into (13), the
class of materials becomes smaller than necessary, but the second law is satisfied for this
restricted class of materials.

Liu method:
In the Liu technique the inequality (13) is transformed by coupling the local entropy in-
equality with a linear combination of the field equations. The factors in this linear combi-
nation of the balance equations are called Lagrange multipliers [7, 8].
In both the cases, the thermodynamic restrictions on the constitutive functions stem from
the linearity of the obtained inequality with respect to the higher derivatives of the wanted
fields which are considered to be totally arbitrary. In a recent paper [25] is proved that for
rigid bodies with internal variables the two methods of exploiting the second law are equiv-
alent, if all balances are taken into account, that means, both methods result in the same
thermodynamic restrictions for the constitutive equations. Here we prove their equivalence
in the 4-field theory of weakly non-local extended irreversible thermodynamics.
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4. Equivalence of the procedures

Assuming that the evolution of the temperature and of the heat flux is governed by the
4-field system (1) and (2), the entropy principle requires that

(14) ∂ts+ Jl,l − σs ≥ 0.

the chosen state space is

(15) Z = {ε, qi, ε,i, qi,j},

Thus, the inequality (14) on the state space takes the form

∂s

∂ε
∂tε+

∂s

∂qi
∂tqi +

∂s

∂ε,i
∂tε,i +

∂s

∂qi,j
∂tqi,j+

+
∂Ji
∂ε

ε,i +
∂Ji
∂qj

qj ,i +
∂Ji
∂ε,j

ε,ji +
∂Ji
∂qj ,k

qj ,ki − σs ≥ 0.(16)

According to the Coleman-Noll procedure, let us substitute the time derivatives of ε and
qi by the system of balance laws. Then, due to the thermodynamic relation

(17)
∂s

∂ε
=

1
ϑ
,

and under the additional assumption

(18) σs =
r

ϑ
,

we obtain the Coleman-Noll inequality

∂s

∂ε,k
∂tε,k +

∂s

∂qi,k
∂tqi,k −

1
τR

∂s

∂qi
qi +

(
− ∂s

∂qi

∂Nil
∂ε

+
∂Jl
∂ε

)
ε,l+

+
(
− ∂s

∂εδkl
− ∂s

∂qi

∂Nil
∂qk

+
∂Jl
∂qk

)
qk,l +

( ∂Jl
∂ε,k

− ∂s

∂qi

∂Nil
∂ε,k

)
ε,kl+

+
( ∂Jl
∂qk,j

− ∂s

∂qi

∂Nil
∂qk,j

)
qk,jl ≥ 0.(19)

Because the higher derivatives can be chosen arbitrarily, and because the factors before
the higher derivatives are independent of them, they have to be zero, since otherwise the
dissipation inequality (19) can be destroyed by choosing the higher derivatives. Thus, we
obtain the thermodynamic restrictions

∂s

∂ε,k
= 0,(20)

∂s

∂qi,k
= 0,(21)

∂Jl
∂ε,k

=
∂s

∂qi

∂Nil
∂ε,k

,(22)

∂Jl
∂qk,j

=
∂s

∂qi

∂Nil
∂qk,j

,(23)
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− 1
τR

∂s

∂qi
qi +

(
− ∂s

∂qi

∂Nil
∂ε

+
∂Jl
∂ε

)
ε,l +

+
(
− ∂s

∂ε
δkl −

∂s

∂qi

∂Nil
∂qk

+
∂Jl
∂qk

)
qk,l ≥ 0.(24)

We now consider the entropy inequality (16) again and introduce the two Lagrange
multipliers λ and Λi, i = 1, 2, 3. Then, the Liu inequality is given by(∂s

∂ε
− λ

)
∂tε+

( ∂s
∂qi
− Λi

)
∂tqi +

∂s

∂ε,k
∂tε,k +

∂s

∂qi,k
∂tqi,k+

+
(∂Jl
∂ε
− Λi

∂Nil
∂ε

)
ε,l +

(∂Jl
∂qk
− Λi

∂Nil
∂qk

− λδkl
)
qk,l+

+
( ∂Jl
∂ε,k

− Λi
∂Nil
∂ε,k

)
ε,kl +

( ∂Jl
∂qk,j

− Λi
∂Nil
∂qk,j

)
qk,jl+

−σs + λr − 1
τR

Λiqi ≥ 0.(25)

Using the same argumentation as before, we obtain the following restrictions

λ =
∂s

∂ε
,(26)

Λi =
∂s

∂qi
,(27)

∂s

∂ε,k
= 0,(28)

∂s

∂qi,k
= 0,(29)

∂Jl
∂ε,k

= Λi
∂Nil
∂ε,k

,(30)

∂Jl
∂qk,j

= Λi
∂Nil
∂qk,j

,(31)

− 1
τR

Λiqi +
(
− Λi

∂Nil
∂ε

+
∂Jl
∂ε

)
ε,l +

+
(
− λδkl − Λi

∂Nil
∂qk

+
∂Jl
∂qk

)
qk,l − σs + λr ≥ 0.(32)

Substituting the expressions of the Lagrange multipliers λ and Λi, obtained by the first two
restrictions above and taking into account (18), we recover the relations (20)-(24).

Consequently, the equivalence of Coleman-Noll and Liu procedures is proved, since the
obtained thermodynamic restrictions and the reduced dissipation inequality are the same.

We now consider the constitutive state space

(33) Z = {ε, qi}.
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The thermodynamic restrictions obtained by both the procedures are

∂Jl
∂ε

=
∂s

∂qi

∂Nil
∂ε

,(34)

∂Jl
∂qk

=
∂s

∂ε
δkl −

∂s

∂qi

∂Nil
∂qk

,(35)

(36) − 1
τR

∂s

∂qi
qi ≥ 0.

If we make the additional assumption outside the usual exploitation scheme that the
entropy density may not depend on the heat flux density, then the second thermodynamic
restriction above yields

(37) Jl =
ql
ϑ
,

which is the classical form of the entropy flux often postulated in rational thermodynamics
[6].

It is worth noticing that the form of the entropy flux is one of the main differences
between Coleman-Noll and Liu approaches. In fact Coleman and Noll assume that the
entropy flux takes the form (37) [5], while Liu regards the entropy flux as a general consti-
tutive function. In this sense the Liu method seems to be designed for a more general class
of materials. It is proved in [26] that, if this difference is maintained, then the two methods
lead to different results. However, here we have removed the Coleman-Noll hypothesis on
the entropy flux, proving that their technique for the exploitation of second law still works.
Moreover, the results we obtained in this case are the same obtained by the application of
the Liu method.

Another property which also deserves consideration follows by the reduced dissipation
inequality (36). In fact, in classical irreversible extended thermodynamics it is usual to
consider the specific entropy in the form [27]

(38) s = s0(ε) +
1
2
mij(ε, q2)qiqj .

The assumption that mij is negative definite ensures that the principle of the maximum
entropy at equilibrium is fulfilled [1, 27].

However, if mij does not depend on q2, by substituting (38) into the inequality (36), it
is easily to be seen that the negative definiteness of mij is a consequence of the second law
of thermodynamics.

5. Conclusions

The equivalence of Coleman-Noll and Liu techniques for the exploitation of the second
law has been proved in the framework of weakly non-local extended thermodynamics. We
have considered the 4-field gradient theory of rigid heat conductors, and we have shown
that both procedures results in the same thermodynamic restrictions.
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